Towards Evidence-based Precision Medicine: Extracting Population Information from Biomedical Text using Binary Classifiers and Syntactic Patterns

نویسندگان

  • Kalpana Raja
  • Naman Dasot
  • Pawan Goyal
  • Siddhartha R. Jonnalagadda
چکیده

Precision Medicine is an emerging approach for prevention and treatment of disease that considers individual variability in genes, environment, and lifestyle for each person. The dissemination of individualized evidence by automatically identifying population information in literature is a key for evidence-based precision medicine at the point-of-care. We propose a hybrid approach using natural language processing techniques to automatically extract the population information from biomedical literature. Our approach first implements a binary classifier to classify sentences with or without population information. A rule-based system based on syntactic-tree regular expressions is then applied to sentences containing population information to extract the population named entities. The proposed two-stage approach achieved an F-score of 0.81 using a MaxEnt classifier and the rule- based system, and an F-score of 0.87 using a Nai've-Bayes classifier and the rule-based system, and performed relatively well compared to many existing systems. The system and evaluation dataset is being released as open source.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-molecular Event Extraction using A GA based Classifier Ensemble Technique

The main goal of Biomedical Natural Language Processing (BioNLP) is to capture biomedical phenomena from textual data by extracting relevant entities, information and relations between biomedical entities (i.e. proteins and genes). In general, in most of the published papers, only binary relations were extracted. In a recent past, the focus is shifted towards extracting more complex relations i...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...

متن کامل

Reverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages

Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...

متن کامل

PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016